Registration of Airborne LiDAR Point Clouds by Matching the Linear Plane Features of Building Roof Facets
نویسندگان
چکیده
Abstract: This paper presents a new approach for the registration of airborne LiDAR point clouds by finding and matching corresponding linear plane features. Linear plane features are a type of common feature in an urban area and are convenient for obtaining feature parameters from point clouds. Using such linear feature parameters, the 3D rigid body coordination transformation model is adopted to register the point clouds from different trajectories. The approach is composed of three steps. In the first step, an OpenStreetMap-aided method is applied to select simply-structured roof pairs as the corresponding roof facets for the registration. In the second step, the normal vectors of the selected roof facets are calculated and input into an over-determined observation system to estimate the registration parameters. In the third step, the registration is be carried out by using these parameters. A case dataset with a two trajectory point cloud was selected to verify the proposed method. To evaluate the accuracy of the point cloud after registration, 40 checkpoints were manually selected; the results of the evaluation show that the general accuracy is 0.96 m, which is approximately 1.6 times the point cloud resolution. Furthermore, two overlap zones were selected to measure the surface-difference between the two trajectories. According to the analysis results, the average surface-distance is approximately 0.045–0.129 m.
منابع مشابه
Fusion of Airborne Optical and Lidar Data for Automated Building Reconstruction
Building reconstruction is essential in applications such as urban planning, telecommunication network planning, flight simulation and vehicle navigation which are of increasing importance in urban areas. This paper introduces a new method for automated building reconstruction by fusing airborne optical data with LiDAR point clouds. The data consists of aerial digital imagery acquired with the ...
متن کاملA Hybrid Approach to Extraction and Refinement of Building Footprints from Airborne Lidar Data
This work presents a combined bottom-up and top-down approach to extraction and refinement of building footprints from airborne LIDAR data. Building footprints are interesting for many applications in urban planning. The cadastral maps, however, may be limited for certain areas or not be updated frequently. Airborne laser scanning data is therefore considered by many people in the last decade a...
متن کاملExtraction of Building Boundary Lines from Airborne Lidar Point Clouds
Building boundary lines are important spatial features that characterize the topographic maps and three-dimensional (3D) city models. Airborne LiDAR Point clouds provide adequate 3D spatial information for building boundary mapping. However, information of boundary features contained in point clouds is implicit. This study focuses on developing an automatic algorithm of building boundary line e...
متن کاملFusion of LIDAR Data and Large-scale Vector Maps for Building Reconstruction
LIDAR data contains plenty of height information, while vector maps preserve accurate building boundaries. From the viewpoint of data fusion, we integrate LIDAR data and large-scale vector maps to perform building modeling. The proposed scheme comprises six major steps: (1) preprocessing of LIDAR data and vector maps, (2) extraction of point clouds that belong to a building, (3) construction of...
متن کاملAutomatic Registration of Iphone Images to Laser Point Clouds of Urban Structures Using Shape Features
Fusion of 3D airborne laser (LIDAR) data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016